Title

- Full title: A dominant function of LynB kinase in preventing autoimmunity
- Short title: Lyn isoform B has a dominant regulatory function

Authors

Ben F. Brian IV†‡, Monica L. Sauer‡, Joseph T. Greene§, S. Erandika Senevirathne†, Anders J. Lindstedt‡, Olivia L. Funk§, Brian L. Ruis§, Luis A. Ramirez§, Jennifer L. Auger§, Whitney L. Swanson§, Myra G. Nunez§, Branden S. Moriarity§, Clifford A. Lowell†, Bryce A. Binstadt‡, and Tanya S. Freedman§,∥∗

Affiliations

1Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota; Minneapolis, MN 55455, United States.
2Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota; Minneapolis, MN 55455, United States.
3Department of Pharmacology, University of Minnesota; Minneapolis, MN 55455, United States.
4Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota; Minneapolis, MN 55455, United States.
5Medical Scientist Training Program, University of Minnesota; Minneapolis, MN 55455, United States.
6Center for Genome Engineering, University of Minnesota; Minneapolis, MN 55455, United States.
7Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota; Minneapolis, MN 55455, United States.
8Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Minnesota; Minneapolis, MN 55455, United States.
9Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
10Stem Cell Institute, University of Minnesota; Minneapolis, MN 55455, United States.
11Department of Laboratory Medicine, University of California, San Francisco; San Francisco, CA 94143, United States.
12Center for Immunology, University of Minnesota; Minneapolis, MN 55455, United States.
13Center for Autoimmune Diseases Research, University of Minnesota; Minneapolis, MN 55455, United States.

*To whom correspondence should be addressed: tfreedma@umn.edu
†These authors contributed equally to this work
‡Current Address: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94170, United States.
Abstract
In this paper, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR/Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (KO) or LynBKO mice. LynKO autoimmune disease is characterized by production of anti-nuclear antibodies, glomerulonephritis, impaired B-cell development, and overabundance of activated B cells and pro-inflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B-cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).

Teaser
Single-isoform Lyn knockout mice reveal sex-specific requirements for LynA and LynB kinases in preventing autoimmunity.

MAIN TEXT

Introduction
The Src-family kinase (SFK) Lyn catalyzes the activation of many immune-cell signaling pathways, including initiating antimicrobial responses by phosphorylating ITAMs (immunoreceptor tyrosine-based activation motifs, e.g., in B-cell antigen receptor (BCR) and myeloid-cell FcγR) (1–6). However, Lyn can also perform inhibitory functions downstream of ITAMs and Toll-like receptors (TLRs) in B and myeloid cells. To suppress ITAM signaling, Lyn phosphorylates ITIMs (immunoreceptor tyrosine-based inhibitory motifs, e.g., in CD22 and SIRPα) and tyrosine and lipid phosphatases (e.g., SHP-1 and SHIP1) (2, 7, 8). Catalytic and adaptor functions of Lyn can suppress TLR signaling via SHIP1, the phosphatidylinositol kinase PI3K, and the transcription factor IRF5 (9–12).

In humans, hypomorphic alleles of LYN are linked to systemic lupus erythematosus (SLE) (13, 14); in addition, lupus patients often have functional deficiencies in Lyn expression, signaling, or trafficking (15, 16). With age, Lyn knockout (KO) mice develop an autoimmune disorder with similarities to human SLE, including anti-nuclear antibody (ANA) production, glomerulonephritis, myeloproliferation, splenomegaly, B-cell lymphopenia, and selective enrichment of autoreactive and inflammatory B-cell and myeloid-cell subsets (17–19). While Lyn is required in multiple cell types to suppress autoimmunity, it is not clear how the opposing positive and negative functions of Lyn are integrated in different populations of myeloid and B-cell populations and signaling pathways to maintain immune homeostasis (5, 6).

Although no sex-specific differences have been reported in LynKO mice, 90% of human SLE patients are women (20). The reasons for this disparity are still a matter of discussion, with genetic and environmental factors both likely contributors. Hormone signaling appears to be involved, as SLE symptoms worsen during pregnancy (21). Immune cells express estrogen and androgen receptors, allowing them to respond directly to sex hormones. In addition, women can have higher inflammatory set-points, with higher type-I interferon (IFN) and antibody titers and more frequent allograft rejection (22–25). Incomplete X-chromosome inactivation in immune cells (26, 27), leading to increased protein levels of TLR7, Bruton’s tyrosine kinase (Btk), and CD40L (23), may also be a factor predisposing women to SLE and other autoimmune diseases. Higher levels of TLR7 in B cells, monocytes, and plasmacytid (p)dendritic cells (DCs) can lead to increased inflammatory signaling and production of DN2 B cells in women or aging-associated B cells (ABCs) in female mice (27–31). It is not known whether LynKO mice lack a sex-specific driver of lupus or whether the resulting disease, which can be initiated by conditional deletion
of Lyn in either B cells or dendritic cells alone (11, 32), is simply so severe as a germline knockout that it obscures any sex differences. The molecular mechanisms regulating Lyn function in a sex- and cell-specific manner are also unclear.

Lyn is expressed as two isoforms: LynA (56 kDa) and LynB (53 kDa). Spliced from a 5′ alternative donor site within exon 2, LynB lacks a 21-amino-acid insert present in LynA (Fig. 1A, Fig. S1A) (33). Using overexpression/reconstitution approaches in Lyn-deficient cells, previous studies have suggested that the roles of LynA and LynB may be distinct (34, 35). Our group has observed that selective degradation of LynA results in a signaling blockade that is not reversible by activated LynB (36, 37). Lack of isoform-specific knockout models, however, has remained a barrier to studying the discrete functions of LynA and LynB.

![Fig. 1. Generation of LynA^{KO} and LynB^{KO} mice.](image)

(A) Locations of LynA and LynB splice junctions in WT lyn transcript; a SnaBI restriction site is situated near the LynB splice donor in exon 2. (B) Generating LynA^{KO} via NHEJ after double cutting within the LynA insert. (C) Generating LynB^{KO} via HDR from a point-mutated donor-oligonucleotide template.

To unmask isoform-specific functions of Lyn, we used CRISPR/Cas9 gene editing to generate single-isoform LynA^{KO} and LynB^{KO} mice, each with the remaining isoform expressed at a physiological level. While LynB^{KO} mice uniformly developed a severe autoimmune disorder characterized by splenomegaly and autoantibody production, only female LynA^{KO} mice developed severe disease. Strikingly, either isoform of Lyn was sufficient to support B-cell development, which effectively uncoupled the developmental phenotype from the skewing and expansion of myeloid and differentiated B-cell populations. We found unique, isoform-specific and sex-specific differences in subsets of myeloid cells, B cells, and T cells in the single-isoform and total Lyn^{KO} mice. Despite these differences, mice of either sex with severe splenomegaly produced autoreactive antibodies and developed lupus nephritis. These observations support a model in which LynB carries the more dominant immunosuppressive function, but LynA is uniquely required to protect against autoimmune disease in female mice.

Results

Generation of LynA^{KO} and LynB^{KO} mice

We generated germline knockouts of LynA and LynB via CRISPR/Cas9 gene editing. For the LynA knockout we injected mouse embryos with a preformed ribonucleoprotein complex (38, 39) of Cas9 and two guide (g)RNAs. This complex excised a short sequence near the (LynA-only) 3′ end of Lyn exon 2, triggering repair by non-homologous end joining (NHEJ) (Fig. 1B). Shortened (double cut/deletion), SnaBI-sensitive (preserved 5′ splice donor) PCR-screened candidates were sequenced and bred to homozygosity. The final LynA^{KO}(CRISPR) allele contained a 37-nucleotide deletion, which induced a frameshift and predicted premature termination codon at position 78 in exon 4 of the 12 LynA coding exons (Fig. S1B) (40, 41). Thus, the LynA splice product fit the criteria for nonsense-mediated decay (NMD) (42), with no alteration of the LynB splice site or mRNA sequence (Fig. S1C).

For the LynB knockout we used a single gRNA with a donor oligonucleotide as a template for homology-directed repair (HDR). The oligonucleotide contained a point mutation to ablate the LynB splice donor and a second, silent mutation of the SnaBI restriction site for screening (Fig. 1C). In the final LynB^{KO}(CRISPR) allele, ablation of the LynB splice donor introduced a conservative valine (V)-to-leucine (L) aliphatic substitution at LynA position 24 (Fig. S2).
To confirm that LynAV24L was functional in the LynBKO, we generated F1 (LynABhemi) mice by crossing homozygous LynAKO(CRISPR) and LynBKO(CRISPR) parents (Fig. 2A, Fig. S3A). Bone-marrow-derived macrophages (BMDMs) from LynABhemi mice expressed a physiological level of LynAV24L from one allele and a physiological level of LynB from the other (Fig. 2B and C). The phenotypes of LynABhemi controls, reported throughout this paper, were indistinguishable from wild type (WT) (e.g. Fig. S3B). LynA and LynAV24L were equally effective initiators of signaling in an ectopic expression system (Fig. S3C and D) (36, 43, 44) and had equal susceptibility to activation-induced degradation in BMDMs (Fig. S3E and F) (36, 37, 45-51). We therefore considered LynAV24L to be an acceptable substitute for LynA in LynBKO mice. Secondarily, these controls increase our confidence that no dominant-negative LynA truncation product was expressed in LynAKO mice.

Fig. 2. SFK expression in LynAKO and LynBKO mice. (A) Breeding scheme, showing parental CRISPR and Neomycin (Neo) (32) knockouts. LynAKO/LynB+/+ progeny have biallelic expression of LynB, whereas LynAKO/LynB−/− have monoallelic expression of LynB; allelic expression is reversed in the LynBKO series. (B) Immunoblot showing SFK expression in WT, (LynAB)hemi, (Lyn)AKO, (Lyn)BKO, and (total Lyn)KO BMDMs; Erk1/2 shows protein loading. (C) Quantification of LynA and LynB protein in BMDMs from male and female mice, corrected for total protein staining (53) and background in LynKO, reported relative to WT. Residual LynB signal in the LynBKO was caused by LynA bleed-through. Error bars: standard error of the mean (SEM) from at least 3 independent experiments (n = 3-5). Unless otherwise specified, significance (Sig.): one-way ANOVA with Tukey’s multiple comparison test, ****P<0.0001, ***P<0.0002, **P<0.005, *P<0.05. Not annotated: in the Lyn(B or A) quantifications [WT/LynABhemi] vs. [Lyn(A or B)KO/LynKO] pairs were significantly different. Other pairs were not sig. WT and CskAS BMDMs were both used in this analysis. (D) Total Lyn protein expression in WT and Lyn−/− BMDMs, corrected as above; in this and other figures, β-actin shows protein loading. Sig.: unpaired t test; error bars: SEM (n=4). (E) Relative LynB protein content in immune cells, with representative immunoblot images for BMDCs, bone-marrow-derived mast cells, BMDMs, peripheral blood monocytes, splenic B cells, and splenic dendritic cells (spl. DC). Error bars: SEM (n = 3-13).

Knockout of LynA and LynB, respectively, was confirmed in BMDMs from homozygous LynAKO/LynB+/+ and LynBKO/LynA+/+ mice (Fig. 2A and B). Expression levels of other SFKs (Fyn, Fgr, Hck, and Src) in BMDMs were unaltered (Fig. 2B, Fig. S4A). LynA expression was increased two-fold in homozygous LynBKO/LynA+/+ BMDMs relative to WT; we attributed this increase to LynA being the only remaining option for transcript splicing.

As the LynA CRISPR deletion was expected to trigger NMD of mature mRNA, after LynA and LynB splicing, we expected to find LynB expressed at roughly physiological levels in LynAKO cells. To our surprise, expression
of LynB was upregulated two-fold relative to WT in homozygous LynA<KO>LynB<+/+> BMDMs (Fig. 2C). To assess whether LynB upregulation was a feedback process triggered by cumulative loss of Lyn (A+B) or an isoform-specific regulatory effect, we generated F1 (Lyn<+/−>) progeny of WT and total Lyn<KO>(Neo) mice (52, 54). Lyn<+/−> BMDMs, in which LynA and LynB are co-expressed from a single allele, had 75% reduced expression of both LynA and LynB (Fig 2D), suggesting that maintaining a balance of LynA and LynB or a change in splicing is the dominant driver of this feedback regulation.

We also assessed the relative expression levels of LynA and LynB in representative immune cells: dendritic cells, macrophages, monocytes, mast cells, and B cells (Fig. 2E). Preferential expression of LynA and LynB varied by cell type, suggesting some degree of cell-specific regulation at the splicing or protein level. Splenic dendritic cells and B cells, for example, expressed the most LynB (63% and 61% of total Lyn), whereas bone-marrow-derived dendritic cells (BMDCs) expressed the least (44% of total Lyn). Although these differences were subtle, they were consistent within each cell type and lend context to cell-specific phenotypes of LynA<KO> and LynB<KO> mice.

To achieve physiological expression of the remaining isoform in the LynA and LynB knockouts, we employed a monoallelic expression strategy, using F1 progeny from homozygous Lyn<KO>(Neo) x homozygous LynA<KO>(CRISPR) or LynB<KO>(CRISPR) parents (Fig. 2A). BMDMs from LynA<KO>LynB<+/−> and LynB<KO>LynA<+/−> mice expressed the remaining Lyn isoform at levels comparable to WT (Fig. 2B and C). Single-isoform expression did not systematically affect the levels of other SFKs in BMDMs and BMDCs (Fig. S4A and B) and did not impair IFN-γ-dependent upregulation of Lyn expression (37) (Fig. S5). LynA<KO>LynB<+/−> and LynB<KO>LynA<+/−> mice are hereafter referred to as “LynA<KO>” and “LynB<KO>”, respectively (Fig. 2C).

Severe splenomegaly in aging LynB<KO> mice and female LynA<KO> mice

Like Lyn<KO> mice (4, 17, 18), male and female LynB<KO> mice developed mild-to-severe splenomegaly between 5 and 8.5 months of age. (Fig. 3, Fig. S6A). In contrast, only female LynA<KO> mice developed severe splenomegaly.

The effects of LynA and LynB knockout were not additive, with the most severely affected single-isoform knockouts comparable in spleen mass to total Lyn<KO>. These data suggest that LynB performs the dominant regulatory function for both sexes, while LynA is uniquely required for maintaining normal cell numbers in the spleens of female mice. This observation did not extend to body mass, another typical indicator of disease, in part due to high variability in WT female mice (Fig. S6B). Moreover, as Lyn and Lyn-expressing myeloid cells regulate adipose, bone, and other tissues (55, 56), interpretation of differences in body mass is not straightforward.

Unique myeloid-cell profiles in LynA<KO> and LynB<KO> mice

Since splenomegaly in total Lyn<KO> mice stems from myeloproliferation, especially in monocyte and granulocyte (neutrophil + eosinophil) populations (11, 32, 57), we used flow cytometry to quantify splenic myeloid cells (Fig. S7). With the exception of an early increase in patrolling monocytes in total Lyn<KO> mice (58), myeloid-cell expansion developed between 5 months (Fig. S8) and 8.5 months of age.

Spleens from aged Lyn<KO>, LynB<KO>, and female LynA<KO> mice had distinctive myeloid-cell imbalances. Most strikingly, the cDC2 pool was increased in LynA<KO> and LynB<KO> mice but not total Lyn<KO> mice (Fig. 4A and Fig.
Only spleens from female single-isoform mice had a secondary expansion of monocytes within the myeloid-cell pool (Fig. 4B and Fig. S10). Neither LynA^{KO} nor LynB^{KO} spleens had the granulocyte expansion characteristic of the total Lyn^{KO} (11, 32, 57) (Fig. 4C and Fig. S11).
differences between LynABhemi and WT populations. Data pooled from 4-6 separate cohort analyses. Gating shown in Fig. S7, cell counts and statistics in Fig. S9-S11. (C) Myeloid-cell populations in Lyn knockout mice. Labels and dotted lines highlight total splenic cell populations (or fractional populations, where indicated) that were increased significantly relative to same-sex WT comparators. LynABhemi analyses are included in the supplement. (D) Summary of myeloid-cell imbalances in Lyn knockout mice.

The monocyte expansion phenotype in LynAKO and LynBKO mice was milder and more sexually dimorphic than in total LynKO mice. Phenotypes in the female single-isoform knockouts varied in severity from mild (elevated total monocyte fraction) in female LynAKO spleens to moderate (elevated patrolling monocyte numbers) in female LynBKO spleens to severe (elevated classical, intermediate and/or patrolling monocyte numbers) in male and female LynKO spleens.

The dendritic-cell expansion phenotype was present in male and female LynAKO and LynBKO mice. cDC1 numbers were not affected in any of the Lyn knockouts, but cDC2 and other dendritic-cell populations were increased in LynAKO and LynBKO mice. Phenotypes varied in severity from mild (elevated cDC2:cDC1 ratio) in LynAKO spleens to severe (elevated cDC2 numbers) in LynBKO spleens.

A population of CD64^−CD11c^+SiglecF^− cells was also increased in LynBKO but not total LynKO spleens. Based on their low expression of MHCII and lack of B-cell markers, we tentatively classified these cells as pre-DCs (59-61) (Fig. S7). In all the Lyn knockouts, this putative pre-DC population upregulated CD80/86, which was absent or expressed at low levels in WT pre-DCs (61) (Fig. S7 inset).

Taken together, the unique expansion of dendritic cells in the single-isoform knockouts and additional monocyte expansion in the female mice created a continuum of myeloid dysregulation, ranging from the mildest phenotype for male LynAKO spleens to more severe phenotypes in LynBKO and female LynAKO spleens (Fig. 4D). Severe phenotypes in male and female mice indicate a dominant role for LynB in maintaining splenic myeloid populations. Loss of both isoforms in the total Lyn knockout restored a WT-like balance of dendritic cells but caused the most severe monocyte and granulocyte expansion.

Myeloid cells from LynKO mice are more pro-inflammatory and activated than cells from single-isoform knockouts

Most myeloid-cell populations in spleens from LynKO mice expressed higher levels of pro-inflammatory and activation-associated markers than cells from either of the single-isoform knockouts, suggesting a more severe inflammatory phenotype. Female LynAKO and LynBKO mice, however, had increased expression of pro-inflammatory markers compared to WT. Splenic macrophages from female LynAKO and LynBKO mice had some elevation of CD80/86 and a significant increase in CD11c, comparable to LynKO (Fig. 5A).

Male LynAKO and male LynBKO macrophages were not significantly different from WT. This sex-specific effect was absent in the total LynKO. For other markers that were responsive to Lyn expression, including CD11b expression on neutrophils, MHCII on cDC2s, and CD80/86 on pDCs, LynKO cells consistently had the most severe phenotype (Fig. 5B, Fig. S12).
Fig. 5 Differential polarization of myeloid cells and BAFF production from male and female LynAKO and LynBKO mice. Spleen-cell suspensions from 8.5-month-old male and female mice were stained for markers of myeloid polarization and analyzed by flow cytometry. Geometric mean fluorescence intensities (gMFIs) reported relative to the average WT value for each cell type and marker within each of 4-6 experiment days. Statistical annotations and error bars as described in Fig.4.

(A) Expression of pro-inflammatory polarization markers by MerTK+ macrophages.

(B) Expression of neutrophil and DC activation/polarization markers.

(C) Serum from 8.5-month-old male and female mice was assayed for BAFF using ELISA; error bars: SEM.

In alignment with their preferential expression of hyper-stimulatory markers on cDC2 and pDC populations (32, 62) and CD11bhi/expanded neutrophils (63, 64), only total LynKO mice had significantly elevated serum levels of the pro-inflammatory cytokine BAFF (Fig. 5C). The trend toward milder elevation of serum BAFF in LynAKO and LynBKO mice also paralleled the trend toward more modest expression levels of MHCII and CD80/86 on cDC2 and pDC subsets.

From these data we conclude that loss of both Lyn isoforms causes more severe inflammatory dysregulation of myeloid cells than loss of either isoform alone. Notably, co-stimulatory markers are also most profoundly dysregulated on dendritic cells in the total LynKO, despite the greater effect of isoform-specific LynA or LynB knockout on dendritic-cell numbers. This could also suggest that granulocytes, not dendritic cells, are the major drivers of BAFF production (65).
LynA or LynB expression is sufficient to restore B-cell development
Reduced B-cell numbers, attributed to cell death during progression through transitional (T) stages 1 through 3 of development (57), is a hallmark of immune dysregulation in LynKO mice (17). Expression of either LynA or LynB, however, was sufficient to rescue B-cell numbers to near-WT levels in male and female mice (Fig. 6A). Spleens from 8.5-month-old LynAKO and LynBKO mice had significantly more T2 and T3 B cells than those of LynKO mice (Fig. 6B and C, Fig. S13), which appeared relatively enriched in T1 cells due to cell loss at later stages (Fig. S14) (66, 67). LynAKO and LynBKO transitional cells generally had intermediate levels of MHCII expression, between WT and the significantly elevated levels in total LynKO cells (Fig. 6D).

Fig. 6. B-cell development is rescued by expression of LynA or LynB. Spleen-cell suspensions from 8.5-month-old male and female mice were stained for markers of B-cell development and analyzed by flow cytometry on 4-6 cohort/experiment days. (A) Total spleen B-cell numbers; error bars: 95% CI. (B) Representative flow-cytometry plots showing gates for follicular B cells (Fo: CD93-CD23+), T1 B cells (CD93-CD23+), T2/T3 B cells (CD93-CD23+), and marginal-zone B cells (MZ: CD23 CD21/35+). (C) Total numbers of B-cell transitional populations T1 and IgMlo T3 per spleen. (D) Surface MHCII expression on T1 and T3 B cells relative to WT within each experiment. (E) Total numbers of Fo and MZ B cells per spleen. (F) Surface MHCII expression on Fo and MZ B cells.

LynAKO and LynBKO spleens also contained more Follicular (Fo) and marginal-zone (MZ) B cells than those of total LynKO (Fig. 6E, Fig. S14), and these cells had levels of surface MHCII comparable to WT (Fig. 6F) (32,
LynA or LynB expression also restored normal IgM expression within the Fo B cell population (Fig. S14).

Taken together, either LynA or LynB expression appears sufficient to restore B-cell development, supporting production of MZ and Fo B-cell populations in WT-like numbers. However, these populations do not experience any further increase in proportion to splenomegaly. Increased surface MHCII could reflect elevated BCR signaling in early transitional populations of LynA\(^\text{KO}\) and LynB\(^\text{KO}\) B cells (70), but differentiated MZ and Fo B-cell populations do not appear to be hyperresponsive. Thus, deletion of either isoform of Lyn effectively uncouples the B-cell development defect from the other myeloid- and B-cell drivers of autoimmunity observed in total Lyn\(^\text{KO}\) mice.

Enrichment of differentiated B cells in spleens from single-isoform Lyn knockout mice
Activated and autoreactive populations of differentiated B cells are enriched in total Lyn\(^\text{KO}\) mice (57, 71), and we performed flow cytometry to quantify these populations in the single-isoform knockouts (Fig. S13). Expansion of differentiated B-cell pools in the Lyn knockouts occurred between 5 months (Fig. S15) and 8.5 months of age. In the single-isoform knockouts but not the total Lyn\(^\text{KO}\), GL7\(^+\) germinal center (GC) or activated B cells, B1 cells, and a CD19\(^{hi}\)CD21/35\(^{hi}\) population likely comprising age-associated B cells (ABCs) increased roughly in proportion to spleen size (Fig. 7A, Fig. S16A).

Fig. 7. Unique expansion of activated and autoimmunity-associated B-cell subsets in LynA\(^\text{KO}\) and LynB\(^\text{KO}\) mice. Spleen-cell suspensions from 8.5-month-old male and female mice were stained for B-cell markers and analyzed by flow cytometry. Populations of differentiated B cells: GL7\(^+\) GC and activated B cells (GL7\(^+\); B220\(^+\)GL7\(^{hi}\)), B1 B cells (B220\(^+\)CD11b\(^{hi}\)), ABCs (CD19\(^{hi}\)CD21/35\(^{hi}\)), plasma cells and plasmablasts (PBPC: CD138\(^{hi}\)IgH\(^+\)L\(^{hi}\)), and switched B cells (IgM\(^+\)IgD\(^-\)). (A) Total splenic numbers of GL7\(^+\) B cells. (B) Total splenic numbers of IgM\(^+\) (unswitched) plasma cells and plasmablasts. (C) Fractional content of each B-cell subset within the total B-cell population; the PBPC pool includes IgM\(^+\) and IgM\(^-\) cells. Labels and dotted lines highlight total splenic cell populations (or fractional populations, where indicated) that differ significantly from WT comparators. Gating in Fig. S13, raw cell counts, statistics, and LynAB\(^\text{hemi}\) data in Fig. 6, Fig. S14, and Fig. S16. No sig. differences between LynAB\(^\text{hemi}\) and WT. Data pooled from 4-6 separate cohort analyses. (D) Summary of Lyn knockout spleen B-cell composition.

In contrast, plasmablasts and plasma cells, including the IgM\(^+\) unswitched population reported to drive the plasmablast expansion in Lyn\(^\text{KO}\) spleens (72) (Fig. S13, inset), were not significantly more numerous in LynA\(^\text{KO}\) or LynB\(^\text{KO}\) than in the Lyn\(^\text{KO}\) (Fig. 7B). Immunoglobulin class-switched B cells, like Fo and MZ B cells, were not significantly expanded in the single-isoform knockouts relative to WT (Fig. S16A). Overall, these expansion profiles resulted in a relative enrichment of GL7\(^+\) cells, B1 cells, and ABCs within the total B-cell population in the LynA\(^\text{KO}\), LynB\(^\text{KO}\),
and LynKO. Only LynKO spleens, however, were significantly enriched in IgM+ plasmablasts and plasma cells and switched B cells (32, 54) (Fig. S16B).

GL7+ B cells were elevated in both male and female LynAKO mice, although females trended toward a more severe phenotype (Fig. S17). In total LynKO mice, the increased fractional content of activated B-cell subsets was largely attributable to the profound loss of Fo and MZ B cells (Fig. 7C). Overall, GL7+ B cells, B1 B cells, and ABCs increased 5-10-fold, roughly in proportion to spleen mass in LynAKO and LynBKO mice, whereas plasma and switched B cells failed to expand similarly (Fig. 7D).

Analysis of T-cell subsets, which lack Lyn expression but respond to changes in myeloid and B-cell activation, revealed additional differences in the single-isoform knockout mice (Fig. S18). Although CD4+ and CD8+ populations of T cells, were expanded in LynAKO and LynBKO spleens relative to total LynKO, natural killer (NK) cells and most T-cell subsets revealed few significant differences (Fig. S19).

In summary, despite supporting relatively normal B-cell development and, cell extrinsically, T-cell development, expression of either LynA or LynB alone was not sufficient to limit the production of activated and autoimmunity-driving B cells. This unique constellation of lymphocyte effects in LynAKO and LynBKO mice effectively uncoupled the B-cell developmental phenotype from dysregulation of mature and further differentiated subsets.

LynAKO and LynBKO mice with severe splenomegaly develop autoimmune disease

Total LynKO mice develop renal inflammation triggered by ANA and complement deposition. Kidneys from LynAKO and LynBKO mice with splenomegaly also had immune-cell infiltration, evidence of glomerular and tubular inflammation (Fig. 8A and B), deposition of IgG and complement (C3) (Fig. 8C and D), and fibrosis (Fig. 8E and F).

Fig. 8. LynAKO and LynBKO mice with splenomegaly or low body mass develop autoimmune disease. 8.5-month-old mice were tested for indicators of autoimmunity and lupus nephritis. (A-D) Kidney and spleen sections and epifluorescence images were obtained from female and male mice with varying degrees of splenomegaly and body mass. (A) Representative hematoxylin and eosin (H&E)-stained kidney sections were de-identified and scored for glomerulonephritis; scale bar = 200 µm. Boxed regions are enlarged in the bottom row. Occurrence of splenomegaly or low body mass in the same individual (+ yes, - no), referenced after unblinding as defined in Fig. 3. Other indicators of disease are similar in all image panels. (B) Frequency of no (-), mild, or severe (sev.) glomerulonephritis in clinical scoring; numbers reflect scores from sections prepared from individual mice; corresponding frequencies of splenomegaly and low body mass are indicated. Analysis pool: WT 5M+2F, LynAKO 4M+3F, LynBKO 2M+5F, LynKO 5M+1F, LynABhemi 1M+5F. (C) Immunofluorescence microscopy images showing nuclei (DAPI), IgG deposition (Texas Red), and C3 deposition (FITC), n = 3; scale bar = 100 µm. Analysis pool for C-F: WT 1M+2F, LynAKO 3F, LynBKO 3F, LynKO 3M, LynABhemi 1M+2F. (D)
Quantification of IgG and C3 staining, using Imaris software; error bars: SEM. Corresponding frequencies of splenomegaly or low body mass are indicated; the same individuals were used for all other quantifications in this figure. (E) Masson’s trichrome (collagen, fibrin, erythrocyte) staining of kidney; scale bar = 500 µm. (F) Quantification of trichrome staining in kidney and spleen. NIH ImageJ software was used to deconvolute and perform region-of-interest analysis; error: SEM.

The levels of renal IgG, C3, and Trichrome staining were comparable in all the Lyn knockout genotypes, coinciding roughly the splenomegaly profile. This suggests that loss of either LynA or LynB is sufficient to drive autoimmunity in mice with severely dysregulated myeloid- and B-cell populations, mostly LynBKO mice and female LynAKO mice. This also indicates that the blockade in B-cell development in total LynKO mice is not a necessary precursor to the later dysregulation of differentiated B cells that drives autoimmunity.

ANA production (Fig. 9A) was assayed using sera from LynAKO and LynBKO mice. As with C3/IgG deposition in the kidney, the frequency of serum ANA positivity mirrored the pattern of splenomegaly within each genotype (Fig. 9B). In a mixed-sex analysis, LynBKO sera were primarily ANA positive, whereas LynAKO sera were more heterogenous.

IgM levels were highest in sera from total LynKO mice, roughly doubling the intermediate phenotypes of the single-isoform knockouts (Fig. 9C) and mirroring the pattern of BAFF production and the expansion of IgM+ plasmablasts and plasma cells. Nevertheless, IgM levels in LynAKO and LynBKO sera were still elevated relative to WT, with loss of both Lyn isoforms trending toward an additive effect.

Finally, we performed immunofluorescence microscopy on frozen spleen sections from 8.5-month-old mice with varying degrees of splenomegaly, using protein markers expressed by B cells (B220), GC/activated B cells (GL7), myeloid cells (CD11b), and T cells (TCRβ) (Fig. 10A, Fig. S20, Fig. S21). Disruption of spleen architecture agreed with other indicators of disease, including splenomegaly. Focusing on lymphoid-follicle organization via immunofluorescence (Fig. 10B) or H&E staining (Fig. 10C) revealed a series of intermediate phenotypes: WT and LynAKO mice with no or mild disease had well-formed B-cell follicles, GCs, and T-cell zones. LynBKO and LynKO mice with moderate-to-severe disease displayed follicular effacement with diffuse GCs and follicles. Together, these data suggest that severe disease is accompanied by disruptions in spleen architecture.
Fig. 10. Splenomegaly in male LynA\(^{K0}\) and Lyn-B\(^{K0}\) mice corresponds with disruptions in spleen architecture. (A) Spleen sections from 8.5-month-old male WT and Lyn knockout mice were imaged via immunofluorescence microscopy. Co-occurrence of either splenomegaly or low body mass (defined in Fig. 3) is indicated (+/-). Shown are nuclei (DAPI), B220\(^+\) B cells (FITC), GL7\(^+\) GC or activated B cells (Alexa Fluor (AF)555), CD11b\(^+\) myeloid cells (AF594), and TCR\(\beta\)^+ T cells (AF647); scale bar = 500 µm. (B) Four-fold increased magnification showing the architecture of a representative B-cell follicle, GC, and T-cell zone; scale bar = 100 µm. (C) Spleen sections visualized by H&E staining; scale bar = 500 µm. Images are representative of n=3 mice.

Discussion
Dissecting the contributions of the two Lyn isoforms has been stymied by a lack of experimental tools. LynB has no unique sequence, making the development of LynB-specific antibodies and RNA silencing reagents infeasible. Also, LynB is produced from an intra-exon splice site, rendering traditional knockout and recombination/excision approaches intractable. We pioneered two CRISPR/Cas9 strategies to create splice-fixed LynB-only or LynA-only mouse strains: for LynA\(^{K0}\) we engineered a deletion and frameshift in the unique LynA insert, and for LynB\(^{K0}\) we ablated the LynB splice donor site. These new models can be used as hemizygotes or homozygotes for physiological or supraphysiological expression of the remaining isoform. We have discovered that LynB has the dominant regulatory role in mice of both sexes, but LynA expression is uniquely required to prevent autoimmunity in female mice. Our data suggest that myeloid cells and B cells have different requirements for LynA and LynB expression, and the two isoforms are differentially required for development, proliferation, and reactivity. Finally, we report that the relative expression levels of LynA and LynB are controlled by feedback regulation and maintained in a cell-specific manner.

We do not yet know why female mice are more reliant on LynA expression for immune homeostasis. It is possible that an added level of immune restraint is necessary simply because females are generally more prone to inflammation and thus easier to propel toward autoimmunity. It is also possible that LynA, and perhaps also LynB, has a direct function in hormone, TLR7, or other sexually dimorphic signaling pathway. In our colony, female
LynAKO mice (and by some criteria female LynBKO mice) had greater pro-inflammatory polarization of macrophages and with GL7+ B cells expanding proportionally with increased spleen size. When LynAKO mice did develop disease, the accompanying splenomegaly and glomerulonephritis were comparable to LynBKO and LynKO phenotypes, suggesting that the degree of disease could not be explained simply by the relative loss of Lyn expression in each genotype. Future studies will investigate dose- and pathway-specific mechanisms underlying these differences.

More generally, splenocyte expansion in the single-isoform knockouts was dominated by parallel increases in differentiated GL7+ B-cell, B1, and ABC populations and some subsets of dendritic cells; monocyte numbers were additionally expanded in female LynAKO and LynBKO mice. In contrast, splenomegaly in both male and female LynKO mice was predominantly driven by granulocyte and monocyte expansion. With the exception of IgM+ plasmablasts/plasma cells, imbalances in B-cell populations generally owed more to a paucity of MZ and Fo B cells than to proliferation of autoreactive subsets. These data suggest that expression of either LynA or LynB is sufficient to restore B-cell development and promote increases in GL7+ and other B-cell populations in parallel with myeloid-cell expansion. Expression of either LynA or LynB is only partially able to rescue the bias toward IgM-producing plasma cells seen in LynKO mice. This differential requirement for Lyn expression in developing and differentiated cell subsets could stem from differential functions of LynA and LynB in the more mature cell types or the greater reliance on catalytic BCR signaling function during B-cell development versus more stoichiometric adaptor functions in differentiated B and myeloid cells.

Clear phenotypic differences between Lyn +/-, LynAKO, and LynBKO mice could also support a model for some distinct functions of LynA and LynB, but with caveats. Although these comparison studies were performed on the same C57BL/6 strain background, colony-to-colony variation could influence disease kinetics and severity. In addition, we cannot make absolute comparisons of LynA and LynB protein concentrations across genotypes in vivo. Total expression of Lyn (A + B) is regulated by cell type and inflammatory environment (36, 37), and we have discovered subtle but consistent differences in the LynA:LynB ratio in different cell types. Nevertheless, from BMDMs we estimate that LynAKO mice lose 45% of total Lyn, LynBKO mice lose 55%, and Lyn +/- mice lose 75%. Despite a more severe presumed Lyn deficiency, Lyn +/- mice were reported to develop less severe glomerulonephritis and less severe MZ/T2 B-cell deficits (17, 54, 68) than observed in our single-isoform knockout mice. It could be that loss of a single Lyn isoform is more devastating than a balanced, 75% depletion of LynA and LynB, and this should be the subject of future studies. In addition, the loss of either LynA or LynB alone produces an enrichment of dendritic cells not found in the total knockout, suggesting that balanced expression of both isoforms is required for homeostatic control of dendritic-cell populations.

LynB generally appears to be the dominant immunosuppressive isoform, with LynB deletion causing severe autoimmune disease in male and female mice. For some indicators (splenomegaly, glomerular IgG and C3 deposition, and kidney fibrosis) LynBKO and total LynKO mice developed equally severe phenotypes. In other cases (serum IgM and BAFF, glomerular immune infiltration, myeloid-cell polarization, and monocyte/granulocyte expansion), LynBKO mice had less severe phenotypes than total LynKO mice, suggesting an additive effect with LynA. LynA and LynB seemed equally capable of promoting B-cell development, regulating myeloid-cell polarization and restraining myeloid-driven inflammation. Given the increased number of activated/inflammatory B-cell types in LynAKO and LynBKO mice, future studies will be aimed at determining whether the single-isoform knockouts have a more B-cell-initiated than myeloid-cell-initiated form of autoimmune disease. Our data suggest that LynAKO and LynBKO manifestations of autoimmune disease are mechanistically distinct, given their peculiar myeloid-cell expansion profiles and apparent restoration of BCR-dependent development.

Finally, the upregulation of LynA protein in the homozygous LynBKO could be evidence of a feedback mechanism sensing LynA:LynB balance in cells. This is not a dose sensor for total Lyn, as Lyn +/- cells have no compensatory changes in expression. Lyn-specific feedback, independent of other SFKs, would reinforce the unique importance of balancing activating and inhibitory functions of Lyn. Our observation of cell-type-specific LynA:LynB ratios further supports the idea that LynA and LynB levels are sensed and regulated. This process could be mediated by splicing factors, as in epithelial and cancer cells (35), or, as in mast cells and macrophages, by regulating the
expression of the E3 ubiquitin ligase c-Cbl, which preferentially degrades LynA (36, 37). Future studies will focus on these different contributions.

In summary, we have generated two new models of SLE, in which myeloid-cell dysregulation and accumulation of activated B-cells are offset by relatively normal B-cell development and myeloid-cell polarization. Selective expression of LynA or LynB is cell-specific and reveals a sexual dimorphism in the requirement for LynA expression to prevent autoimmune disease in female mice. As no sex-specific effects have been reported in LynKO mice, the more subtle and female-specific LynAKO disease is an opportunity to explore sexual dimorphism and cell-specific mechanisms of lupus progression. Definition of overlapping vs. isoform-specific regulatory modes will inspire new ways of manipulating these signaling processes to restore immune balance in patients with SLE and other autoimmune diseases.

Materials and Methods

Mouse strains and housing
All animal use complied with UMN/AAALAC and National Institutes of Health policy, under Animal Welfare Assurance Number A3456-01 and Institutional Animal Care and Use Committee (IACUC) Protocol #1910-37487A. Animals were housed in a specific-pathogen-free facility under the supervision of a licensed Doctor of Veterinary Medicine and supporting veterinary staff. Breeding and experimental animals were genotyped via real-time PCR (Transnetyx, Inc, Memphis, TN) and secondarily (where possible) by immunoblotting. All mice, including LynKO (52) and CskAS were maintained on a C57BL/6 background and bred in house. CskAS mice are hemizygous for the CskAS bacterial artificial chromosome (BAC) transgene on a CskKO background (37, 51). Lyn+/− mice are hemizygous for total Lyn expression (54).

Generation of LynAKO and LynBKO mice
CRISPR gRNAs were designed using CRISPOR.org (74) and purchased from IDT (Newark, NJ), and cutting efficiency was validated in NIH/3T3 cells. The LynAKO(CRISPR) allele was generated using two gRNAs to induce double-strand breaks, effectively deleting 77 bp bounding portions of the unique LynA insert in mouse lyn exon 2 (5'-GAUCUCUCACAUAAAUAGUU-3') and the following intron 2 (5'-CCAUGCUCAGCAUACUGU-3'). The LynBKO(CRISPR) allele was generated using one gRNA (5'-GUUCGGUCAGUAUUACGUAC-3') to cut near the LynB splice site in exon 2. A donor oligonucleotide (5'-AAAAGGAAAGACAATCTCAATGACGATGAAGTAGATTCGAAGACTCAACCAcTgCGTAA-TACTGACCCAATTTATGTAGAGGATCCACATCTCAACTAAACAGCAAAGGCCAGTAAG-3') was supplied to template two single-nucleotide substitutions for HDR (indicated by the lower-case letters in the above sequence) that ablated the LynB splice site and a SnaBI restriction site.

To generate the CRISPR alleles, stud C57BL/6J male mice and three-week-old C57BL/6J female mice were purchased from Jackson Laboratory (Bar Harbor, ME); females were housed 3-4 days before hormone injection. Superovulation was induced via intraperitoneal injection of 5 IU pregnant mare serum gonadotropin, followed 48 h later by 5 IU human chorionic gonadotropin (National Hormone & Peptide Program, Torrance, CA). Females were then immediately mated with the stud males, and embryos were harvested the following day and injected with injection buffer (10 mM Tris-HCl, 0.25 mM EDTA, pH 7.4) with 30 ng/ul Cas9 protein and 3.5 ng/µl of each gRNA. For LynBKO, the injection mixture also included 7 ng/µl single-stranded, 120 base-pair (bp) donor oligonucleotide (39). Embryos were then implanted into female CD-1 mice (38-49 days old) purchased from Charles River Laboratories (Wilmington, MA).

DNA was isolated from the toes of candidate pups using DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) and subjected to intermediate Topo cloning (Invitrogen, Carlsbad, CA) to insert PCR products into a plasmid for PCR amplification/restriction digest and sequencing (GeneWiz, South Plainfield, NJ). A 500 bp segment, encompassing the LynB splice site and the LynA unique insert, was amplified from each candidate using the primers Forward 5′-acacccgagatgtcctgct-3′ and Reverse 5′-agccagattatccctaaaatctctaca-3′. SnaBI (New England Biolabs, Ipswich, MA) cleavage of WT product (recognition site TAC/GTA) generates two 250 bp fragments. In LynAKO
a Cas9 double-cut yielded a shorter (~423 bp), SnaBI-sensitive product. In LynBKO the 500 bp PCR product was not cleavable by SnaBI.

CskASLYnBKO mice were generated by breeding LynBKO into our Csk+/− and CskAS(CskKO) strains and then crossing the progeny Csk+/−LynBKO (or LynKO) and CskAS(CskKO)LynKO (or LynBKO) together, as described previously for CskASLynKO (37), CskAS-CblKO, and CskASCbl-bKO (36). CskASLynAKO mice were also generated in parallel.

DNA constructs, mutagenesis, and transfection of Jurkat cells

His6V5-tagged mouse LynA and Myc-tagged memCskAS constructs have been described previously (36). Site-directed mutagenesis (QuikChange Lightning, Agilent Technologies, Santa Clara, CA) was used to generate LynA24L from the WT LynA plasmid DNA. Mutations were confirmed via sequencing (GENEWIZ, South Plainfield, NJ).

After authentication via STR profiling and testing negative for mycoplasma (ATCC, Manassas, Virginia), Jurkat-derived JCaM1.6 T cells (43, 44) were cultured in RPMI-1640 medium supplemented with 5-10% fetal bovine serum (FBS, Omega Scientific, Tarzana, CA) and 2 mM glutamine, penicillin, and streptomycin (Sigma-Aldrich, St. Louis, MO). For transient transfections, cells were grown overnight in transfection medium: antibiotic-free RPMI-1640 with 10% FBS and 2 mM glutamine. Batches of 15 M cells were resuspended in transfection medium with 10-15 µg each plasmid DNA (LynA and memCskAS). Cells were rested and then electroporated 10 ms at 285 V in a BTX square-wave unit (Harvard Apparatus, Holliston, MA). Cells were then resuspended in transfection medium and rested in a cell-culture incubator overnight. One million live cells were then resuspended in phosphate-buffered saline and rested for 30 min at 37°C prior to stimulation and analysis.

Preparation of BMDMs, BMDCs, and mast cells

Bone marrow was extracted from femora/tibiae of mice and subjected to hypotonic erythrocyte lysis. BMDMs were generated on untreated plates (BD Falcon, Bedford, MA) by culturing in Dulbecco's Modified Eagle Medium (Corning Cellgro, Manassas, VA) containing ~10% heat-inactivated FBS (Omega Scientific, Tarzana, CA), 0.11 mg/ml sodium pyruvate, 2 mM penicillin/streptomycin/L-glutamine (Sigma-Aldrich, St. Louis, MO), and 10% CMG-12-14-cell-conditioned medium as a source of M-CSF. After 6 or 7 days, cells were resuspended in enzyme-free ethylenediaminetetraacetic acid (EDTA) buffer, replated, and rested overnight in untreated 6-well plates (BD Falcon) at 1 M cells/well in unconditioned medium ± 25 U/ml IFN-γ (Peprotech, Cranbury, NJ) (36, 53) prior to stimulation and analysis.

BMDCs were generated on 10 cm tissue-culture (TC)-treated plates (Celltreat, Pepperell, MA) in Dulbecco's Modified Eagle Medium (DMEM, Corning Cellgro, Manassas, VA). For dendritic-cell culture, CMG-12-14 supernatant was replaced with 10 ng/ml murine GM-CSF and 10 ng/ml murine IL-4 (both PeproTech), with medium refreshment on day 3-4. On day 6-7, cells were resuspended in enzyme-free EDTA buffer, replated in TC-treated 12-well plates (Celltreat, Pepperell, MA) at 1 M cells/well in DMEM + 10% FBS, and rested overnight at 37°C prior to analysis. In the final cell mixture, CD11c+ cDCs comprised only 0.5% of live cells and PDCA1+ pDCs comprised 0.1% of live cells, with the major contaminating populations being macrophages (91%) and monocytes (6%).

Bone-marrow-derived mast cells were prepared as described previously (36, 75), with CMG14-12 supernatant replaced by 10 ng/ml murine IL-3 (PeproTech). Cells were cultured at least 5 weeks prior to lysis and analysis.

Isolation of splenic B cells, dendritic cells, and peripheral blood monocytes

B cells were isolated from 3.5-to-4.5-month-old mice via a negative-selection strategy adapted from the EasySep Mouse B-Cell Isolation Kit (STEMCELL Technologies, Vancouver, Canada). Mouse spleens were disintegrated in PBS containing 2% FBS and 1 mM EDTA (PBS-FBS-EDTA) and passed through a 40 μm mesh filter. Batches of 100 M cells were resuspended in 1 ml PBS-FBS-EDTA, mixed with normal rat serum (STEMCELL) and incubated 10 min at room temperature with the following biotinylated antibodies from BioLegend (BioL) and Tonbo Biosciences (Tonbo) (both San Diego, CA): CD3 (BioL 100244), CD64 (BioL 139318), CD4 (Tonbo 30-0041-U100), CD8 (Tonbo 30-0081-U500), CD161/NK1.1 (Tonbo 30-5941-U500), F4/80 (Tonbo 30-4801-U500), Gr-1 (Tonbo 30-5931-U500), CD11c (Tonbo 30-0114-U100), and Ter119 (Tonbo 30-5921-U500).
Splenocytes were then incubated with magnetic MojoSort Streptavidin Nanobeads (BioLegend) and incubated 3 min at room temperature. Tubes were then placed inside a column-free EasySep magnet for 3 mins. Flow-through was characterized via flow cytometry: from 6 independent isolations, the B220+ B cells comprised 76 ± 7% of live cells, with the major contaminating populations being (low-Lyn-expressing) natural killer cells (5 ± 3%) and eosinophils (3 ± 2%).

Dendritic cells were isolated via negative selection with EasySep Mouse Pan-DC Enrichment Kit. From 3 independent isolations, CD11c+ cDCs comprised 42 ± 4% of live cells and PDCA1+ pDCs comprised 5 ± 1%, with the major contaminating populations being macrophages (5 ± 1%) and (low-Lyn-expressing) natural killer cells (1%).

Peripheral blood monocytes were isolated from 3.5-to-4.5-month-old mice by negative selection. Blood collected in heparin tubes was subjected to hypotonic lysis to remove erythrocytes. After washing, batches of 100 M cells were resuspended in 1 ml PBS-FBS-EDTA and isolated by magnetic sorting with the EasySep Mouse Monocyte Isolation Kit (STEMCELL). Monocyte suspensions were washed and characterized via flow cytometry from 6 independent isolations, the final samples contained approximately 61% CD64+‘MerTK’ monocytes, with the largest contaminants being 10% B cells and 2% (non-Lyn-expressing) T cells.

Cell stimulation and immunoblotting
Cultured cells were treated with 10 µM 3-IB-PP1 (K. Shokat, UCSF) at 37°C before placing on ice, lysing with SDS sample buffer, and preparation for immunoblotting (53). Approximately 0.025 M cell equivalents were run in each lane of a 7% Nupage Tris-Acetate gel (Invitrogen, Carlsbad, CA) and transferred to Immobilon-FL PVDF membrane (EMD Millipore, Burlington, MA). REVERT Total Protein Stain (LI-COR Biosciences, Lincoln, NE) was used as a standard for the whole-sample protein content for quantification (53). After reversing the total protein staining, membranes were treated 1 h with Intersect (TBS) Blocking Buffer (LI-COR) and incubated with the appropriate primary and near-infrared secondary antibodies from Cell Signaling Technology (CellSig) (Danvers, MA), Abcam (Cambridge, UK), ProMab Biotechnologies (ProMab, Richmond, CA), R & D Systems (R&D, Minneapolis, MN), and LI-COR Biosciences (LI-COR, Lincoln, NE): β-actin 8H10D10 (CellSig 3700), Erk1/2 3A7 (CellSig 9107), Fgr 6G2 (ProMab 20318), Fyn (CellSig 4023), Hck 394903 (R&D MAB3915), LynA + LynB Lyn-01 (Abcam ab1890), Src (CellSig 2108), V5 epitope tag D3H8Q (CellSig 13202), phospho-Erk1/2 (pT202/pY204) D13.14.4E (CellSig 4370), phospho-Zap70/Syk (pY Zap 319/Syk 352) 65E4 (CellSig 2717), IRDye 800CW Donkey anti-Mouse IgG (LI-COR NC9744100), IRDye 800CW Donkey anti-Rabbit IgG (LI-COR NC9523609), and IRDye 680RD Donkey anti-Mouse IgG (LI-COR 926-68072).

Blots were visualized using an Odyssey CLx near-infrared imager (LI-COR), and signals were background-subtracted using ImageStudio Software (LI-COR) and corrected for whole-lane protein content (Total Protein Stain) (53).

Flow cytometry
Spleens were excised from mice, mechanically disintegrated, and passed through a 40 µm mesh filter. Single-cell suspensions were then subjected to hypotonic erythrocyte lysis and resuspended in FACS buffer (PBS without (w/o) Ca2+/Mg2+ supplemented with 2% FBS and 2 mM EDTA). Antibody master mixes for cell-surface stains were prepared in FACS buffer, and staining was performed for 1 h at 4°C. Cells were then fixed and permeabilized in Cytofix/Cytoperm solution (BD Biosciences, San Jose, CA) for 20 min at 4°C. After washing in BD Perm/Wash buffer, intracellular staining was performed overnight at 4°C with antibodies in Perm/Wash buffer. Following washing, samples were resuspended in PBS with 0.5% paraformaldehyde. Flow cytometry was performed on a Fortessa X-30, and data were analyzed using FlowJo software. Flow-cytometry antibodies were combined as appropriate from BD Biosciences (BD, San Diego, CA), Thermo Fisher (Thermo), Tonbo Biosciences, and BioLegend:
B220 RA3-6B2 BUV395 (BD), CD4 GK1.5 BUV395 (BD), CD8a 53-6.7 BUV737 (BD), CD11b M1/70 BUV395/A700/BUV737 (BD), CD11c HL3 BUV737 (BD), CD16/32 2.4G2 (Tonbo), CD19 6D5 BV711 (BioL),
CD21/35 7E9 FITC (BioL), CD23 B3B4 PE (BioL), CD25 PC61 BV605 (BioL), CD38 90 A700 (BioL), CD44 IM7 PerCP-Cy5.5 (Tonbo), CD45 30-F11 A700/BUV496 (BioL), CD62L MEL-14 BV510 (BioL), CD64 X54-5/7.1 BV711 (BioL), CD69 H1.2F3 FITC (Tonbo), CD80 B7-1/16-10A1 PE (Tonbo), CD86 B7-2/PO3.1 PE (Tonbo), CD93 AA4.1 APC (BioL), CD138 281-2 BV421 (BioL), CD170/Siglec-F S17007L FITC (BioL), CD185 L138D7 PE (BioL), CD206 C068C2 BV650 (BioL), FoxP3 3G3 PE -Cy7 (Tonbo), Ghost Dye Red 780 (Tonbo), GL7 GL7 PerCP-Cy5.5 (BioL), I-A/I-E M5/114.15.2 BV510 (BioL), IgD 11-26C.1 BV786 (BD), IgM RMM-1 PE-Cy7 (BioL), Ly6C HK1.3 BV785 (BioL), Ly6G 1A8 PerCP-Cy5.5 (Tonbo), MerTK DS5MMER Pe-Cy7 (Thermo), NK1 PK136 BV421 (BioL), PD-1 29F.1A12 BV785 (BioL), PDCA-1 927 BV421 (BioL), TCRβ H57-597 FITC/APC (Tonbo), and XCR1 ZET FITC and APC (BioL).

Immunofluorescence microscopy

Spleens and kidneys were excised from aged mice and frozen in optimal cutting temperature (OCT) compound prior to sectioning. Sections of 5 µm thickness were cut from each block and kept frozen (76). Prior to staining, sections were dried 30 min, fixed 15 min in ice-cold acetone, dried 10 min, and washed 5 min in phosphate-buffered saline (PBS)-based buffer with 0.5% bovine serum albumin (BSA). Sections were then blocked for 1 h with 2% BSA and 1:100 Fc Shield (Tonbo Biosciences) in PBS and then washed 5 min. Spleen sections were further blocked using an endogenous biotin blocking kit (Invitrogen) and washed 3 x 5 min. Spleen sections were then stained overnight at 4°C with CD11b-AF594 (M1/70), TCRβ-AF647(H57-597), GL7-Biotin (GL7), and B220-FITC (RA3-6B2). Kidney sections were stained with C3-FITC (RmC11H9) and goat anti-mouse FC-Texas Red (Jackson Immunoresearch). Stained sections were washed 3 x 5 min. Spleen sections were subsequently stained for 1 h with Streptavidin-DyLight550 (ThermoFisher) secondary antibody and washed. Sections were mounted with pro-long gold DAPI-infused mounting media (Cell Signaling Technology) and glass coverslips. Slides were imaged on a Leica DM6000B fluorescence microscope at 5, 20, or 40X magnification. Sixteen tiled images from each kidney were merged for analysis. C3/Ig deposition was quantified in batch using Imaris software (Oxford Instruments, Abingdon, UK).

H&E staining and scoring

Spleen and kidney sections were H&E stained for pathological assessment of tissue architecture and glomerulonephritis. Sections were dried 30 min at room temperature and fixed 15 min in ice-cold acetone. Sections were then rinsed 2 min in PBS, stained 2 min with Hematoxylin quick stain (Vector Laboratories, Burlingame, CA), and rinsed again in water until clear. Sections were then stained 1 min with Eosin (Vector), rinsed 2 x 5 min in 95% ethanol, rinsed 2 x 5 min in 100%, and cleared 10 min in a xylene mixture. Slides were mounted with VectaMount medium (Vector). Kidney images were de-identified and sent to a pathologist for disease scoring of glomerulonephritis and interstitial nephritis (77). Scoring was performed on a 0-3 scale (0 = absent, 1 = mild, 2 = severe) based on glomerular size, hypercellularity, and sclerosis; interstitial disease was assessed based on the degree of inflammatory infiltrate and alteration in tissue architecture.

Trichrome staining

Kidney or spleen sections were dried 30 min and fixed 10 min in 4% paraformaldehyde in PBS at room temperature. Trichrome Stain Kit (Abcam ab150686) was then used to stain sections according to the manufacturer’s protocol. Briefly, sections were incubated 1 h at 60°C in Bouin’s fluid, rinsed, and incubated 5 min in Weigert’s hematoxylin, rinsed, stained 15 min with Biebrich Scarlet/Acid Fuschin, rinsed, incubated 10 min in phosphomolybdic/phosphotungstic acid, stained 15 min with Aniline Blue, rinsed in deionized water, and then incubated 5 min in 1% acetic acid. Sections were then dehydrated with two rinses with 95% ethanol and 2 rinses with 100% ethanol, cleared with xylene, and mounted with VectaMount medium (Vector Laboratories, Burlingame, CA). Slides were imaged on a brightfield microscope and analyzed using NIH ImageJ Fiji.

Serum collection from mice

Blood was harvested via venipuncture from the submandibular vein of mice or via retroorbital bleed and allowed to clot at room temperature for 90 min, after which it was spun at 4000 rpm at 4°C for 10 min. The resulting serum supernatant was then aliquoted and placed on ice for immediate use or stored at -80°C.
BAFF analysis

R&D Systems Quantikine enzyme-linked immunosorbent assay (ELISA) Kit for Mouse BAFF/BLyS/TNFSF13B (Cat. MBLYS0) was used to quantify serum levels of BAFF. Assay Diluent RD1N (80 µl) was added to each well of a microplate. Standard or sample (40 µl, after 1:50 dilution in Calibrator Diluent RD6-12) was added to each well in technical duplicate. Other reagents were prepared according to manufacturer’s instructions. Samples incubated 2 h at room temperature (RT) on a horizontal orbital shaker at 225 RPM. Each well was then washed 5x. Mouse BAFF/BLyS Conjugate (120 µl) was added to each well and incubated 2 h at RT on the orbital shaker. After washing, 120 µl Substrate Solution was added to each well and incubated 30 min in the dark. Stop Solution (120 µl) was then added to each well. Optical density (OD) at 450 nm was measured immediately using a Bio-RAD iMark Microplate Reader. The average OD from each sample was converted to pg/ml value with reference to the standard curve and correction for dilution.

IgM analysis

Wells in polystyrene 96-well plates were coated with 50 µl anti-mouse-IgM-Fab2 (prepared at 1 µg/ml in PBS), incubated overnight, washed 6x with distilled water, blocked 1 h at room temperature with 50 µl PBS-BB (PBS w/o Ca²⁺/Mg²⁺, 0.05% Tween-20, 1% BSA), and initiated with 50 µl 1:60,000-diluted serum. After incubation 2 h at RT, wells were washed 6x. Biotinylated anti-mouse-IgM (50 µl at 500 ng/ml) was then added to each well and incubated 1 h at RT. After washing, 50 µl SA-HRP (diluted 1:40 in PBS-BB) was added to each well and incubated 1 hour at RT. After washing, ELISA results were visualized by adding 50 µl TMB:Peroxide and stopped with 50 µl sulfuric acid (1 N). Relative amounts of IgM were determined by measuring the OD at 450nm using a Bio-RAD iMark Microplate Reader.

ANA detection

Kallestad HEp-2 (Bio-Rad, Cat. No. 30472) was used to detect Anti-Nuclear antibody staining according to the manufacturer’s instruction, modified to detect mouse IgG. Briefly, wells were incubated with 40 µL mouse serum, diluted 40x in PBS with 1% BSA, at room temperature for 20 min. After incubation, slides were washed in PBS for 10 minutes and incubated with 30 µL FITC-labeled goat-anti-mouse IgG (Jackson ImmunoResearch, Cat. No. 115-095-164) diluted 200x and DAPI for 20 min. at room temperature, followed by a 10 min. PBS wash. Slides were then mounted and coverslimped and viewed on an Olympus BX51 fluorescent microscope equipped with a digital camera and DP-BSW software (Olympus). Images were quantified, pseudocolored, and merged using ImageJ software (NIH) with the Fiji plugin.

Statistical analyses

Statistical analysis was performed using Prism software (Graphpad, La Jolla, CA). Significance was typically assessed using one-way ANOVA with Tukey’s multiple comparison test, unless otherwise indicated. For cellularity analyses, outliers were identified using ROUT analysis (Q = 1%). Students t test was used for simple, two-way comparisons. Contingency data were assessed using two-sided Fisher’s exact test with Welch’s correction, with and without Bonferroni correction. To meet the test conditions, data were binarized as indicated by combining no/mild disease groups or mild/severe groups. Error bars typically reflect 95% CI or SEM, and n values reflect individual animals, pooled from multiple independent experiments.

References

Acknowledgments
We thank Anindya Bagchi, Yun You, the University of Minnesota Mouse Genetics Laboratory, and the University of Minnesota Genome Engineering Shared Resource for technical assistance. Kevan Shokat and Flora Rutaganira kindly supplied the CskAS inhibitor 3-IB-PP1. Thanks to Jesse Williams and Jason Mitchell for microscopy advice and assistance. Sincere thanks also to Julie Zikherman, Mark Headley, Jess Hamerman, Alli O'Rourke, Clare Abram, Marc Jenkins, Kathy Pape, Gwen Randolph, Jeremy Brooks, Brandon Burbach, Kaylee Schwertfeger, Michael Farrar, Carol Lange, and John Connett for valuable protocols, feedback, and discussion.

Funding:
National Institutes of Health grant R01AR073966 (TSF)
National Institutes of Health supplement 3R01AR073966-03S1 (TSF)
National Institutes of Health grant R03AI130978 (TSF)
National Institutes of Health grant T32DA007097 (BFB)
National Institutes of Health grant T32CA009138 (MLS, JTG)
American Cancer Society – Kirby Foundation Postdoc Fellowship PF-21-068-01-LIB (JTG)
University of Minnesota Center for Immunology New Mouse Award (TSF)
University of Minnesota Foundation Equipment Award E-0918-01 (TSF)
University of Minnesota Center for Autoimmune Diseases Research Pilot Grant (TSF)

Author contributions:
Conceptualization: BFB, TSF
Methodology: BFB, JTG, MLS, AJL, JLA, BLR, BSM, CAL, BAB, TSF
Investigation: BFB, MLS, JTG, OLF, SES, AJL, LAR, JLA, MGN, WLS, CAL, TSF
Visualization: BFB, JTG, JLA, TSF
Funding acquisition: BFB, JTG, MLS, TSF
Project administration: TSF
Supervision: TSF
Writing – original draft: BFB, TSF
Writing – review & editing: BFB, MLS, JTG, OLF, SES, AJL, LAR, JLA, MGN, WLS, BLR, BSM, CAL, BAB, TSF

Competing interests: Authors declare that they have no competing interests.

Data and materials availability: All data are available in the main text or the supplementary materials.
A. WT mouse Lyn (genomic DNA sequence)

5' region of exon 2 (shared by LynA & LynB)

exon 2 LynB splice donor site (GT) & SnaBI restriction site (TACGTA)

3' region of exon 2 (LynA only)

intron

Exon 3 (shared)

exon 4

ATGGGATGTATTAAATCAAAAAGGAAGACAATCTCAATGACGATGAAGTAGATTCGAAGACTCAACCA

GTACGTA

ATACTGACCG

AACTATTTATGTGAGAGATCCAACGTCCAATAAACACAGAAAGCCTATGTTGCTGATGCAAGACTGATGCA

C. LynB sequence in LynAKO(CRISPR)

DNA notation (connecting mRNA splice junctions)

WT

ATGGGATGTATTAAATCAAAAAGGAAGACAATCTCAATGACGATGAAGTAGATTCGAAGACTCAACCA

GTACGTA

ATACTGACCG

AACTATTTATGTGAGAGATCCAACGTCCAATAAACACAGAAAGCCTATGTTGCTGATGCAAGACTGATGCA

AKO

ATGGGATGTATTAAATCAAAAAGGAAGACAATCTCAATGACGATGAAGTAGATTCGAAGACTCAACCA

GTACGTA

ATACTGACCG

AACTATTTATGTGAGAGATCCAACGTCCAATAAACACAGAAAGCCTATGTTGCTGATGCAAGACTGATGCA

Translation

WT

MGCIKRKDNLNDDEVSKTQPVEFHLHPQORFQT

DPEEQGDIVVALYDGIHPDDLFSFKGERMKVLE...

AKO

MGCIKRKDNLNDDEVSKTQPVEFHLHPQORFQT

DPEEQGDIVVALYDGIHPDDLFSFKGERMKVLE...

1 73

Fig. S1. Nucleotide and protein sequence of LynAKO(CRISPR). (A) Genomic sequence of exon 2 (yellow) and exon 3 (green) of murine Lyn, illustrating the LynB splice site (boxed) and LynA unique-region insert (cyan). (B) WT and LynAKO(CRISPR) (AKO) sequences. The LynAKO(CRISPR) sequence has a frameshift after codon 30 and a putative premature termination codon (PTC) 78, which should induce NMD of the LynA splice product. Nucleotide sequences are shown in DNA notation for ease of comparison to genomic sequence above. (C) The RNA and translated protein sequence of LynB is unaffected. Generated with EMBL-EBI Clustal Omega and ExPASy Translate Tool.
LynA sequence in LynBKO(CRISPR)

DNA notation (connecting mRNA splice junctions)

\begin{verbatim}
WT ATGGGATGTATTAAATCAAAAAGAAGACAATCTCAATGACGATGAAGTAGATTCGAAGACTCAACCATACGTA
 CTGCGTA ATACTG
BKO ATGGGATGTATTAAATCAAAAAGAAGACAATCTCAATGACGATGAAGTAGATTCGAAGACTCAACCATACGTA
 CTGCGTA ATACTG
\end{verbatim}

\begin{verbatim}
WT ACCGAACATTTATGTGAGAGATCCAACGTCCAATAAACAGCAAAGGCCAGTTCCTGAATTTCATCTTTTACCAGGACAGA...
BKO ACCGAACATTTATGTGAGAGATCCAACGTCCAATAAACAGCAAAGGCCAGTTCCTGAATTTCATCTTTTACCAGGACAGA...
\end{verbatim}

Translation

\begin{verbatim}
WT MGCIKSKRKDLNLDEVDSKTPQVRNTDRTIYVRDPTSNKQRPYFEHLLPQRFQTKDPEEQGDIVVALYPYGDIPD...
BKO MGCIKSKRKDLNLDEVDSKTPQLRNTDRTIYVRDPTSNKQRPYFEHLLPQRFQTKDPEEQGDIVVALYPYGDIPD...
\end{verbatim}

\begin{verbatim}
1 81
\end{verbatim}

(no LynB due to ablation of splice donor)

Fig. S2. Nucleotide and protein sequence of LynBKO(CRISPR). LynB is not expressed in the LynBKO due to a splice-site mutation. LynA has a V24L substitution.
Fig. S3. V24L substitution does not impair LynA function. (A) Lyn protein expression in parental and LynABhemi mice. (B) Phenotypic identity of LynAV24L-expressing LynABhemi and WT mouse spleens at 8.5 months. (C) We have previously shown that ectopic expression of LynA in Lck-deficient JCaM1.6 T cells can restore SFK-dependent ITAM signaling. Treatment of an inhibitor-sensitized variant of the SFK negative regulator Csk (memCskAS) with the designer inhibitor 3-IB-PP1 induces LynA activation and signal initiation. Representative immunoblots from JCaM1.6 lysates show that WT LynA, LynAV24A, or LynAV24L, but not kinase-dead LynAT410K+Y397F are capable of initiating signaling that leads to Erk1/2 phosphorylation (pT202/pY204); total Erk reflects protein loading. (D) Quantification of LynA-dependent Erk phosphorylation during 3-IB-PP1 treatment, corrected for the relative levels of transfected LynA protein. (E) We generated CskASLynBKO mice, which expressed LynAV24L and the CskAS-transgene, and activated the SFKs in CskASLynBKO BMDMs by treating with 3-IB-PP1. Representative immunoblots show loss of LynA and increased phosphorylation of Syk (pY352) upon SFK activation; β-actin reflects protein loading. (F) Rates of degradation of WT LynA and LynAV24L are indistinguishable, indicating that the V24L substitution does not impair Y32 phosphorylation, interaction with c-Cbl, or other signal-initiation or regulatory machinery.
Fig. S4. SFK expression is largely unaltered in LynAKO and LynBKO BMDMs and BMDCs.

(A) Immunoblot quantification of total Fgr, Fyn, Hck, and Src protein levels in Lyn-knockout BMDMs relative to WT. (B) Quantification of SFKs in BMDCs. For both panels error is reported as SEM (n=3-5). No significance was found with one-way ANOVA with Tukey’s multiple comparison test except [BMDC Fgr, LynKO] P=0.017.
Fig. S5. Lyn upregulation in response to IFN-γ is preserved in LynAKO and LynBKO BMDMs. Representative immunoblot showing Lyn protein expression in WT and Lyn knockout BMDMs rested (-) or incubated overnight with low-dose IFN-γ (+).
Fig. S6. No splenomegaly in 5-month-old mice and variable body mass in 8.5-month-old mice. (A) Spleen and body masses in male sentinel mice aged 5 months, with incomplete progression to severe disease; error bars: 95% CI. (B) Body masses of 8.5-month-old mice from Fig.3, with dotted lines reflecting low-mass cutoffs for males (M < 33.2 g) and females (F < 24.5 g).
Fig. S7. Myeloid Gating. Live, single, hematopoietic (CD45+) cell gating, showing spleen subsetting of a representative WT mouse. End-gate population assignments are highlighted in orange. CD11c^{hi}SiglecF^{lo}MHCII^{lo} expression is consistent with a pre-DC population. **Inset:** CD11c^{hi}MHCII^{lo} putative (put.)pre-DCs in spleen suspensions from WT, LynB^{ko}, and Lyn^{ko} mice aged 8.5 months, with CD80/86 expression on a color axis.
Fig. S8. Splenic myeloid-cell composition at 5 months. Flow cytometry and cell counting methodologies were used to enumerate myeloid cellularity in spleens from 5-month-old mice. No significant differences were found in classical monocyte, neutrophil, putative pre-DC, cDC, or pDC numbers.
Fig. S9. DC numbers in spleens from 8.5-month-old mice. Total cells per spleen and fractional content of DC populations from mice aged 8.5 months. Error bars: 95% CI. In addition to the annotated comparisons (asterisks colored by genotype), there are no significant differences between LynABhemi and WT. For clarity, only male/female comparisons within a genotype are shown. Pooled from 4-6 separate analyses.
Fig. S10. Monocyte and macrophage populations in spleens from 8.5-month-old mice. Total monocyte and macrophage numbers per spleen in mice aged 8.5 months. Error bars: 95% CI. In addition to the annotated comparisons (asterisks colored by genotype), there are no significant differences between LynAB\text{hemi} and WT. For clarity, only male/female comparisons within a genotype are shown. Pooled from 4-6 separate analyses.
Fig. S11. Granulocyte populations in spleens from 8.5-month-old mice. Total eosinophil and neutrophil numbers per spleen in mice aged 8.5 months. Error bars: 95% CI. In addition to the annotated comparisons (asterisks colored by genotype), there are no significant differences between LynABhemi and WT. For clarity, only male/female comparisons within a genotype are shown. Pooled from 4-6 separate analyses.
Figure S12. Additional markers of myeloid-cell polarization and activation. Expression of polarization, activation, and costimulatory markers in DCs, macrophages, and neutrophils.
Fig. S13. B-cell Gating. Live, single, hematopoietic (CD45+) cell gating, showing spleen subsetting of a representative WT mouse aged 8.5 months. Abbreviations: GL7-expressing germinal-center or activated (GL7+) B cell, age-associated B cell (ABC), follicular (Fo) B cell, marginal zone (MZ) B cell, and transitional (T) types 1, 2, and 3 B cell. **Inset:** Expression of IgM by plasmablasts and plasma cells from WT, LynBKO, and LynKO mice aged 8.5 months.
Fig. S14. Additional analysis of Transitional, MZ, and Fo B cells. Fractional and Total cell numbers and surface MHC II in spleens from 8.5-month-old and 5-month-old mice. Total and fractional content of IgM+ T2 B cells and relative IgM expression on Fo B cells.
Fig. S15. Splenic B-cell composition at 5 months. Flow cytometry and cell counting were used to enumerate B cellularity in spleens from 5-month-old mice. No significant differences were found in LynA\(^{\text{KO}}\) or LynB\(^{\text{KO}}\) relative to WT or total Lyn\(^{\text{KO}}\).
Fig. S16. Differentiated Splenic B cells. (A) Total cells per spleen and (B) fractional content of splenic B cells from mice aged 8.5 months. Error: 95% CI. In addition to the annotated comparisons (asterisks colored by genotype), there are no sig. differences between LynAB̂mni and WT; 4-6 separate analyses.
Fig. S17. Representative B-cell populations in 8.5-month-old male and female mice. B1 B cells and ABC analyses were not sufficiently powered to separate by sex but trended similarly to GL7+ cells.
Fig. S18. T-Cell Gating. Live, single, hematopoietic (CD45^+) cell gating, showing spleen subsetting of a representative WT mouse aged 8.5 months. Abbreviations: regulatory T (Treg), CD8 T-resident memory (Trm), T follicular helper (Tfh), and T resident memory (Trm), T effector memory (Tem), and T central memory (Tcm). No sig. differences at 5 months.
Fig. S19. T-cell and NK-cell populations in spleens from 8.5-month-old mice.
Fig. S20. Additional spleen images from WT and LynA^{KO} mice. Immunofluorescence images of spleens from different individual WT and LynA^{KO} mice, with corresponding splenomegaly or low body mass, as defined in Fig. 3. WT 2F+1M, LynA^{KO} 3F.
Fig. S21. Additional spleen images from Lyn^{KO} and Lyn^{KO} mice. Immunofluorescence images of spleens from different individual Lyn^{KO} and Lyn^{KO} mice, with corresponding splenomegaly or low body mass, as defined in Fig. 3. Lyn^{KO} 3F, Lyn^{KO} 3M.